CINCON

SELECTING AN AC-DC OPEN-FRAME POWER SUPPLY

Choosing a Right PSU Matters:

AC-DC power supplies are essential to a lot of end applications as major power supply units (PSUs). More and more manufacturers provide a wide variety of choices to engineers. However, some of the PSUs may be suitable to your device, but some are not due to the PSU design. Therefore, to choose a right PSU is an important key to project success.

Here are 2 tips for you to consider:

- 1. Class I or Class II for your system?
- 2. Heat dissipation to the power supply

Class I or Class II for Your Application:

As we all know that a PSU is the key component to make your device work. The first thing you need to confirm is to figure out if your end application has ground (earth) connection.

If the system design of the device includes the ground (earth) connection, a Class I power supply is the correct choice. On the other hand, if it does not include, a Class II power supply is the right one. The EMC testing result is deeply affected by the power supply. In this case, you need to pay more attention on that.

In many cases, when an end application is a portable device, it's common to see that a Class II power supply is chosen. It's because there's more uncertainty of AC source where people use the devices. We don't know if the AC source is connected with the ground. In other cases, Class I power supplies are chosen.

For user's convenience, unlike many of power supplies which only have one version, Cincon also developed some series which could be used as either Class I or Class II. We will offer more in the near future.

Series	Output Power	Input Voltage (Vac)	Output Voltage (Vdc)	Eff.	Package / Dimension (inch)	Application
CFM130M	130W	80~264V	12V, 24V, 36V, 48V		3.000x2.000x1.20(Open-frame) 3.598x2.000x1.299(Baseplate) 3.598x2.520x1.358(Cover)	Medical
CFM150S	150W	90~264V	12V, 24V, 28V, 36V, 48V	Up to 94%	4.00x2.00x1.283(Open-frame) 4.598x2.00x1.362(Baseplate)	ITE/Industrial
CFM200M	200W	90-264V	12V, 24V, 48V	Up to 93.5%	4.000x2.000x1.480(Baseplate) 4.606x2.441x1.594(Cover)	Medical

In addition, while you choose a Class I power supply, it's very important to know how to mount it and connect to the ground. Take Cincon AC-DC medical power supply CFM130M as the example, we provide the detailed instruction in the application note. There are three mounting types:

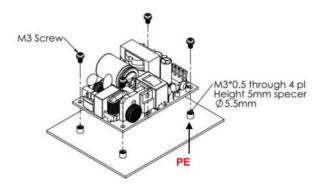
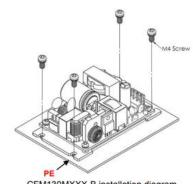



Figure 1: CFM130M direct mounting type

CFM130MXXX-B installation diagram

Note: M4 screw head and washer diameter shall not exceed 5.5mm.

Figure 2: CFM130M mounting type with baseplate-cooling solution

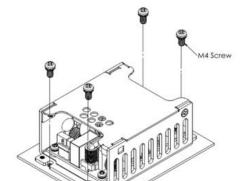


Figure 3 & 4: CFM130M mounting type with cover

Furthermore, Cincon also points out the "must-have" clearance as the reminder required by the safety standard.

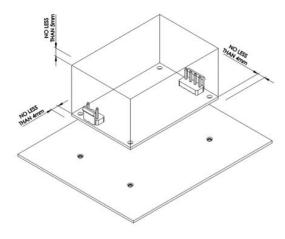


Figure 5: The clearance needed to be noticed

Heat Dissipation to The Power Supply:

While choosing an open-frame supply, you may need to figure out the ambient temperature of the surrounding area of the power supply, meaning the temperature inside the end application.

The heat dissipation solution has the direct influence on the power supply lifetime and output power. The higher the temperature is, the lower the output power and lifetime are. The figure 6 & 7 shows the lifetime of core components of CFM130M under 25°C & 40°C. You could see the decrease of the lifetime due to the higher ambient temperature.

Input	Location	Cap. temperature	Life time	Result	Input	Location	Cap. temperature	Life time	Result
(Vac)		(°C)	(Hours)	(Hours)	(Vac)		(°C)	(Hours)	(Hours)
115	C105	65.2	78,888	78,888	115	C105	80.2	27,891	27,891
230		62.8	93,276		230	C103	77.8	32,978	27,091
115	C206	70.0	113,294	113,294	115	C206	85.0	40,055	40,055
230		67.5	134,646		230	C200	82.5	47,605	40,033
115	C301	70.1	279,010	206,144	115	C301	85.1	49,616	36,658
230		72.7	206,144		230	C301	87.7	36,658	30,030
115	C303	55.3	250,436	230,464	115	C303	70.3	88,543	81,481
230		56.5	230,464		230	C303	71.5	81,481	01,401

Figure 6 & 7: 25℃ V.S 40℃ of component lifetime

The common solutions of heat dissipation are natural convection, fan-cooling type and both. In some end applications, an engineer may face the dilemma that he/she prefers the fanless solution, but the temperature would be still higher without a fan.

To solve this problem, Cincon provides the baseplate-cooling design as the alternative of fanless solution. As you see from the figure 8. The purple line shows the CFM130M without the baseplate only has 100W output power, but the blue line shows the series with the baseplate has a higher output power 110W. The baseplate directs the heat to the case of the device, and this reduce the temperature of the power supply resulting in higher output performance.

CFM130M Series Derating Curve

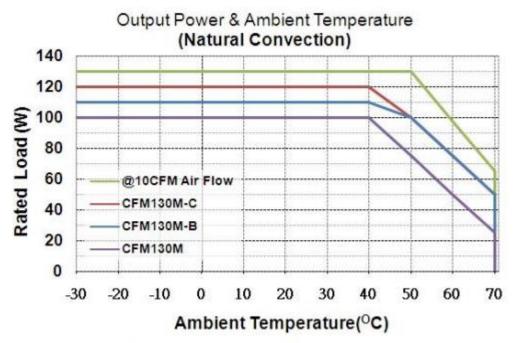


Figure 8: derating curve of the output power

The following are the Cincon products with baseplate-cooling design:

Series	Output Power	Input Voltage (Vac)	Output Voltage (Vdc)	Eff.	Package / Dimension (inch)	Application
CFM130M	130W	80~264V	12V, 24V, 36V, 48V	Up to 94%	3.000x2.000x1.20(Open-frame) 3.598x2.000x1.299(Baseplate) 3.598x2.520x1.358(Cover)	Medical
CFM150S	150W	90~264V	12V, 24V, 28V, 36V, 48V	Up to 94%	4.00x2.00x1.283(Open-frame) 4.598x2.00x1.362(Baseplate)	ITE/Industrial
CFM200M	200W	90-264V	12V, 24V, 48V	Up to 93.5%	4.000x2.000x1.480(Baseplate) 4.606x2.441x1.594(Cover)	Medical
CFM300S	300W	90-264V	12V, 24V, 36V, 48V	Up to 94%	5.000x3.000x1.421(Baseplate) 5.355x3.425x1.591(Cover)	ITE/Industrial
CFM300M	300W	90-264V	12V, 24V, 36V, 48V	Up to 94%	5.000x3.000x1.421(Baseplate) 5.355x3.425x1.591(Cover)	Medical

If you follow the 2 tips, it would be easier to help you find the right open-frame power supply.

Visit CINCON's website