CP10.241-M1

DIMENSION

PULS

CP-Series

24V, 10A, SINGLE PHASE INPUT

POWER SUPPLY

- 2MOPP Safety Approved for Medical applications According to IEC 60601-1, 3rd edition
- EMC Tested for Medical Use According to IEC 60601-1-2, 4th edition
- Quick-connect Spring-clamp Terminals
- AC 100-240V Wide-range Input
- Width only 39mm
- Efficiency up to 95.2%, Excellent Partial Load Efficiency
- 20% Output Power Reserves
- Safe Hiccup^{PLUS} Overload Mode
- Easy Fuse Breaking due to High Overload Peak Current
- Active Power Factor Correction (PFC)
- Minimal Inrush Current Surge
- Full Power Between -25°C and +60°C
- DC-OK Relay Contact
- 3 Years Limited Warranty

GENERAL DESCRIPTION

The CP10.241-M1 is a DIN-rail mountable single-phaseinput power supply for industrial use and for use in medical equipment. It provides a stabilized and galvanically separated SELV/PELV output voltage.

The specialty of this power supply is the 2MOPP (two means of patient protection) safety approval for medical use and the fulfillment of the required EMC tests for professional healthcare facility and home healthcare environments.

The CP-Series is part of the DIMENSION power supply family. The most outstanding features of CP10.241-M1 are the high efficiency, advanced inrush current limitation, active PFC and the wide operational temperature range.

High immunity to transients and power surges as well as low electromagnetic emission, a DC-OK relay contact and a large international approval package for a variety of applications makes this unit suitable for nearly every situation.

ORDER NUMBERS

Power Supply	CP10.241-M1	Medical approved device
Accessory	ZM12.SIDE	Side mount bracket

SHORT-FORM DATA

Output voltage	DC 24V	
Adjustment range	24 – 28V	Factory setting 24.1V
Output current	12 – 10.3A	Below +45°C ambient
	10 – 8.6A	At +60°C ambient
	7.5 – 6.5A	At +70°C ambient
	Derate linearely be	tween +45°C and +70°C
Input voltage AC	AC 100 - 240V	-15%/ +10%
Mains frequency	50 - 60Hz	±6%
AC Input current	2.15 / 1.13A	At 120 / 230Vac
Power factor	0.99 / 0.97	At 120 / 230Vac
Input inrush current	6 / 9A pk	At 40°C 120 / 230Vac
Input voltage DC	DC 110-150V	±20%
Input current DC	2.35A	At 110Vdc
Efficiency	93.6 / 95.2%	At 120 / 230Vac
Power losses	16.4 / 12.1W	At 120 / 230Vac
Hold-up time	37ms	
Temperature range	-25°C to +70°C	Continuous
Size (wxhxd)	39x124x117mm	Without DIN-rail
Weight	620g / 1.37lb	

May 2017 / Rev. 1.2 DS-CP10.241-M1-EN

All parameters are specified at 24V, 10A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

DIMENSION CP-Series

CP10.241-M1

Page

24V, 10A, SINGLE PHASE INPUT

INDEX

		Page
1.	Intended Use	3
2.	Installation Requirements	3
3.	AC-Input	4
4.	DC-Input	5
5.	Input Inrush Current	6
6.	Output	7
7.	Hold-up Time	
8.	DC-OK Relay Contact	9
9.	Efficiency and Power Losses	
	Lifetime Expectancy and MTBF	
11.	Functional Diagram	11
12.	Terminals and Wiring	12
13.	Front Side and User Elements	13
14.	EMC – According to Generic Standards	14
	EMC – According to Medical Standards	
	Environment	
	Safety Features	
18.	Protection Features	18
19.	Dielectric Strength	18
	Approvals	
21.	RoHS, REACH and Other Fulfilled Standards	19

22. Phys	sical Dimensions and Weight	20
	essories	
23.1.	ZM12.SIDE - Side Mounting Bracket	21
23.2.	YR20.242 - Redundancy Module	22
23.3.	YR20.246 - Redundancy Module with	
Auton	nated Load Sharing	22
24. App	lication Notes	23
24.1.	Peak Current Capability	23
24.2.	Back-feeding Loads	24
24.3.	External Input Protection	24
24.4.	Output Circuit Breakers	
24.5.	Series Operation	25
24.6.	Parallel Use to Increase Output Power	25
24.7.	Parallel Use for Redundancy	25
24.8.	Inductive and Capacitive Loads	25
24.9.	Charging of Batteries	
24.10.	Operation on Two Phases	26
	Use in a Tightly Sealed Enclosure	
24.12.	Mounting Orientations	27

The information given in this document is correct to the best of our knowledge and experience at the time of publication. If not expressly agreed otherwise, this information does not represent a warranty in the legal sense of the word. As the state of our knowledge and experience is constantly changing, the information in this data sheet is subject to revision. We therefore kindly ask you to always use the latest issue of this document (available under www.pulspower.com). No part of this document may be reproduced or utilized in any form without our prior permission in writing.

TERMINOLOGY AND ABREVIATIONS

PE and 🕀 symbol	PE is the abbreviation for P rotective E arth and has the same meaning as the symbol 🕀.
Earth, Ground	This document uses the term "earth" which is the same as the U.S. term "ground".
T.b.d.	To be defined, value or description will follow later.
AC	Alternating Current
DC	Direct Current
AC 230V	A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±15%) included. E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)
230Vac	A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included.
50Hz vs. 60Hz	As long as not otherwise stated, AC 100V and AC 230V parameters are valid at 50Hz mains frequency. AC 120V parameters are valid for 60Hz mains frequency.
may	A key word indicating flexibility of choice with no implied preference.
shall	A key word indicating a mandatory requirement.
should	A key word indicating flexibility of choice with a strongly preferred implementation.

May 2017 / Rev. 1.2 DS-CP10.241-M1-EN

All parameters are specified at 24V, 10A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

DIMENSION CP-Series

CP10.241-M1

24V, 10A, SINGLE PHASE INPUT

1. INTENDED USE

This device is intended for use in medical equipment as well as for general use such as in industrial control, office, communication, and instrumentation equipment.

Do not use this device in equipment, where malfunction may cause severe personal injury or threaten human life.

2. INSTALLATION REQUIREMENTS

WARNING Risk of electrical shock, fire, personal injury or death.

- Turn power off before working on the device. Protect against inadvertent re-powering.
- Do not open, modify or repair the unit.
- Use caution to prevent any foreign objects from entering the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns.

This device may only be installed and put into operation by qualified personnel.

This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect. If damage or malfunction should occur during installation or operation, immediately turn power off and send the device to the factory for inspection.

Install the device in an enclosure providing protection against electrical, mechanical and fire hazards.

Install the device onto a DIN-rail according to EN 60715 with the input terminals on the bottom of the device. For other orientations see de-rating requirements in chapter 24.12.

Make sure that the wiring is correct by following all local and national codes. Use appropriate copper cables that are designed for a minimum operating temperature specified in chapter 12.

Do not use the device in pollution degree 3 environments without additional protection or in applications where a degree of protection better than IP20 is required.

A disconnecting means shall be provided for the output of the device when used in applications according to CSA C22.2 No 107.1-01.

The device is designed as "Class of Protection I" equipment according to IEC 61140. A PE (Protective Earth) connection is required.

The device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid (e.g. cable conduits) by more than 15%!

Keep the following minimum installation clearances when the device is permanently loaded with more than 50% of the nominal current: 40mm on top, 20mm on the bottom, 5mm left and right side. Increase the 5mm to 15mm in case the adjacent device is a heat source.

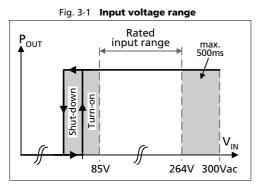
DIMENSION

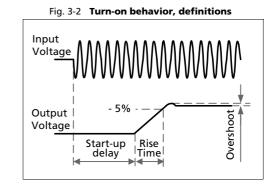
CP-Series

CP10.241-M1

24V, 10A, SINGLE PHASE INPUT

3. AC-INPUT

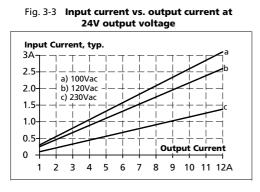

AC input	Nom.	AC 100-240V	Suitable for TN-, TT- and IT mains networks	
AC input range	Min.	85-264Vac	Continuous operation	
	Min.	264-300Vac	For max. 500ms	
Allowed voltage L or N to earth	Max.	300Vac	Continuous, IEC 62477-1	
Input frequency	Nom.	50–60Hz	±6%	
Turn-on voltage	Тур.	80Vac	Steady-state value, see Fig. 3-1	
Shut-down voltage	Тур.	70Vac	Steady-state value, see Fig. 3-1	
	Тур.	55Vac	Dynamic value (max. 250ms)	
External input protection	See recommendations in chapter 24.3.			

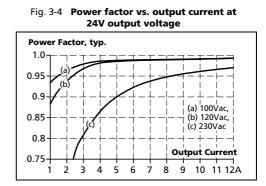

		AC 100V	AC 120V	AC 230V	
Input current	Тур.	2.60A	2.15A	1.13A	At 24V, 10A, see Fig. 3-3
Power factor ^{*)}	Тур.	0.99	0.99	0.97	At 24V, 10A, see Fig. 3-4
Crest factor ^{**)}	Тур.	1.5	1.5	1.65	At 24V, 10A
Start-up delay	Тур.	300ms	290ms	240ms	See Fig. 3-2
Rise time	Тур.	30ms	30ms	30ms	At 24V, 10A const. current load, 0mF load capacitance, see Fig. 3-2
	Тур.	75ms	75ms	75ms	At 24V, 10A const. current load, 10mF load capacitance,, see Fig. 3-2
Turn-on overshoot	Max.	200mV	200mV	200mV	See Fig. 3-2
External input protection	See recommendations in chapter 24.2				

External input protection See recommendations in chapter 24.3.

*) The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit.

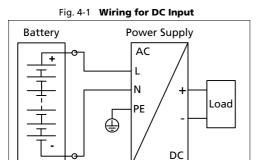
**) The crest factor is the mathematical ratio of the peak value to RMS value of the input current waveform.





DIMENSION CP-Series

CP10.241-M1


24V, 10A, SINGLE PHASE INPUT

4. DC-INPUT

DC input	Nom.	DC 110-150V ±20%	
DC input range	Min.	88-180Vdc	Continuous operation
DC input current	Тур.	2.35A	At 110Vdc, at 24V, 10A
Allowed Voltage L/N to Earth	Max.	375Vdc	Continuous, IEC 62477-1
Turn-on voltage	Тур.	80Vdc	Steady state value
Shut-down voltage	Тур.	70Vdc	Steady state value
	Тур.	55Vdc	Dynamic value (max. 250ms)

Instructions for DC use:

- a) Use a battery or a similar DC source. A supply from the intermediate DC-bus of a frequency converter is not recommended and can cause a malfunction or damage the unit.
- b) Connect +pole to L and –pole to N.
- c) Connect the PE terminal to an earth wire or to the machine ground.

DIMENSION CP-Series

24V, 10A, SINGLE PHASE INPUT

5. INPUT INRUSH CURRENT

An active inrush limitation circuit (NTCs, which are bypassed by a relay contact) limits the input inrush current after turn-on of the input voltage.

The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

		AC 100V	AC 120V	AC 230V	
Inrush current	Max.	11A _{peak}	7A _{peak}	11A _{peak}	At 40°C, cold start
	Тур.	9A _{peak}	6A _{peak}	6A _{peak}	At 25°C, cold start
	Тур.	9A _{peak}	6A _{peak}	9A _{peak}	At 40°C, cold start
Inrush energy	Max.	0.1A ² s	0.1A ² s	0.4A ² s	At 40°C, cold start

Fig. 5-1 Typical turn-on behaviour at nominal load, 120Vac input and 25°C ambient

		50ms/D	1 V		1
11.	Inpu 2A/D	t current IV			
	1			v V V	
	Input v 250V/D	oltage IV		64	-
	WWWWW		ŴŴ		ANN N
	Output	voltage 2	20V/DI	V	~

Fig. 5-2 Typical turn-on behaviour at nominal load, 230Vac input and 25°C ambient

4 -0A	50ms/D	V		
Input cur 2A/DIV	rent			A ASA A
			V/Anninen	v WW
Input vol 500V/DIV	tage			
- WWWWWWW	WWW	MM	WWW	WWWW
Output v	oltage	20V/D	IV	

DIMENSION

CP-Series

CP10.241-M1

24V, 10A, SINGLE PHASE INPUT

6. OUTPUT

		2414	
Output voltage	Nom.	24V	
Adjustment range	Min.	24-28V	Guaranteed
	Max.	30.0V****)	At clockwise end position of potentiometer
Factory settings	Тур.	24.1V	±0.2%, at full load and cold unit
Line regulation	Max.	10mV	85-300Vac
Load regulation	Max.	50mV	Static value, 0A \rightarrow 10A; see Fig. 6-1
Ripple and noise voltage	Max.	50mVpp	20Hz to 20MHz, 50Ohm
Output current	Nom.	10A	At 24V, ambient temperature <60°C, see Fig. 6-1
	Nom.	12A ^{*)}	At 24V, ambient temperature <45°C, see Fig. 16-1
	Nom.	7.5A	At 24V and 70°C ambient temperature, see Fig. 16-1
	Nom.	8.6A	At 28V, ambient temperature <60°C, see Fig. 6-1
	Nom.	10.3A*)	At 28V, ambient temperature <45°C, see Fig. 16-1
	Nom.	6.45A	At 28V and 70°C ambient temperature, see Fig. 16-1
	Тур.	30A	Up to at least 12ms ^{*****} , output voltage stays above 20V, see Fig. 6-2 and Fig. 24-3, This peak current is available once every five seconds (hardware controlled).
Output power	Nom.	240W	Continuously available
	Nom.	288W*)	Power Boost *)
Overload behaviour		cont. current	Output voltage > 13Vdc, see Fig. 6-1
		Hiccup ^{PLUS} mode**)	Output voltage < 13Vdc, see Fig. 6-1
Short-circuit current	Min.	12.5A*** ⁾	Load impedance 45mOhm, see Fig. 6-3
	Max.	15.5A*** ⁾	Load impedance 45mOhm, see Fig. 6-3
	Max.	5A	Average (R.M.S.) current, load impedance 50mOhm, see Fig. 6-3
	Min.	28A	Up to 12ms, load impedance 45mOhm, see Fig. 6-2
	Тур.	30.5A	Up to 12ms, load impedance 45mOhm, see Fig. 6-2

*) Power Boost

**)

This power/ current is continuously allowed up to an ambient temperature of 45°C.

Above 45°C, do not use this power/ current longer than a duty cycle of 10% and/ or not longer than 1 minute every 10 minutes. Hiccup^{PLUS} Mode

At heavy overloads (when output voltage falls below 13V), the power supply delivers continuous output current for 2s. After this, the output is switched off for approx. 18s before a new start attempt is automatically performed. This cycle is repeated as long as the overload exists. If the overload has been cleared, the device will operate normally. See Fig. 6-3

***) Discharge current of output capacitors is not included.

****) This is the maximum output voltage which can occur at the clockwise end position of the potentiometer due to tolerances. It is not a guaranteed value which can be achieved. The typical value is about 28.5V.

*****) Reduced pulse length for AC 100V mains.

DIMENSION **CP-Series**

CP10.241-M1

24V, 10A, SINGLE PHASE INPUT

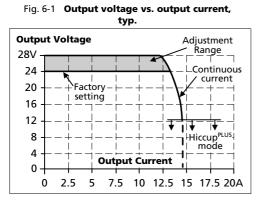
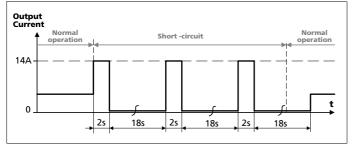
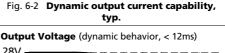
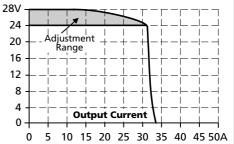
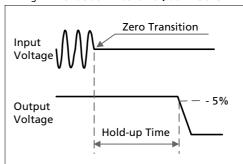





Fig. 6-3 Short-circuit on output, Hiccup^{PLUS} mode, typ.



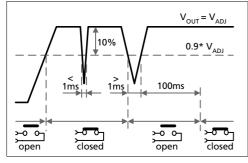
7. HOLD-UP TIME

		AC 100V	AC 120V	AC 230V	
Hold-up Time	Тур.	73ms	73ms	73ms	At 24V, 5A, see Fig. 7-1
	Min.	55ms	55ms	55ms	At 24V, 5A, see Fig. 7-1
	Тур.	37ms	37ms	37ms	At 24V, 10A, see Fig. 7-1
	Min.	28ms	28ms	28ms	At 24V, 10A, see Fig. 7-1

Fig. 7-1 Hold-up time vs. input voltage
Hold-up Time a) 24V 5A typ. c) 24V 10A typ. 80ms b) 24V 5A min. d) 24V 10A min.
50b
40 <u></u> c 30 <u></u> c
20
10
90 120 155 190 230Vac

Fig. 7-2 Shut-down behavior, definitions

DIMENSION CP-Series


24V, 10A, SINGLE PHASE INPUT

8. DC-OK RELAY CONTACT

This feature monitors the output voltage on the output terminals of a running power supply.

Contact closes	As soon as the output voltage reaches typ. 90% of the adjusted output voltage level.			
Contact opens	As soon as the output voltage dips more than 10% below the adjusted output voltage. Short dips will be extended to a signal length of 100ms. Dips shorter than 1ms will be ignored.			
Contact ratings	Max. 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A resistive load			
	Min. 1mA at 5Vdc min. permissible load			
Isolation voltage	See dielectric strength table in section 18.			

Fig. 8-1 DC-ok relay contact behavior

CP10.241-M1

DIMENSION CP-Series

24V, 10A, SINGLE PHASE INPUT

9. EFFICIENCY AND POWER LOSSES

		AC 100V	AC 120V	AC 230V	
Efficiency	Тур.	92.9%	93.6%	95.2%	At 24V, 10A
	Тур.	92.5%	93.4%	95.1%	At 24V, 12A (Power Boost)
Average efficiency*)	Тур.	92.5%	93.0%	94.3%	25% at 2.5A, 25% at 5A, 25% at 7.5A. 25% at 10A
Power losses	Тур.	2.5W	2.1W	1.8W	At 24V, 0A
	Тур.	9.8W	8.9W	7.1W	At 24V, 5A
	Тур.	18.3W	16.4W	12.1W	At 24V, 10A
	Тур.	23.4W	21.7W	14.8W	At 24V, 12A (Power Boost)

*) The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time.

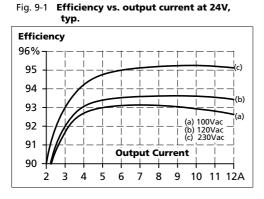


Fig. 9-3 Efficiency vs. input voltage at 24V, 10A, typ.

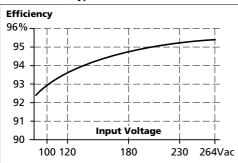


Fig. 9-2 Losses vs. output current at 24V, typ.

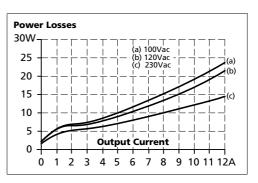
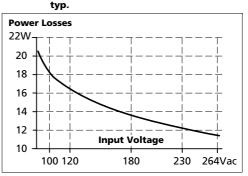



Fig. 9-4 Losses vs. input voltage at 24V, 10A,

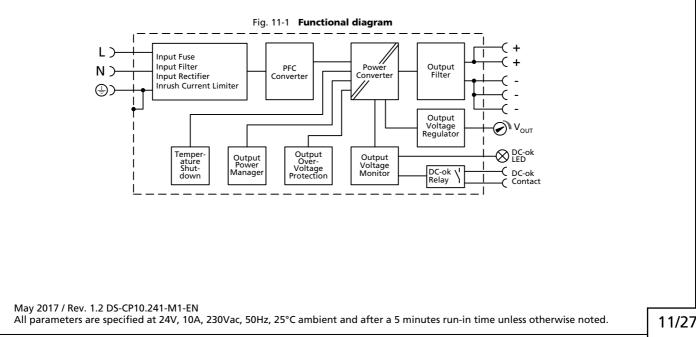
May 2017 / Rev. 1.2 DS-CP10.241-M1-EN All parameters are specified at 24V, 10A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

www.pulspower.com Phone +49 89 9278 0 Germany

DIMENSION **CP-Series**

CP10.241-M1

24V, 10A, SINGLE PHASE INPUT


10. LIFETIME EXPECTANCY AND MTBF

	AC 100V	AC 120V	AC 230V	
Lifetime expectancy*)	128 000h	141 000h*)	176 000h*)	At 24V, 5A and 40°C
	61 000h	75 000h	120 000h	At 24V, 10A and 40°C
	47 000h	59 000h	101 000h	At 24V, 12A and 40°C
	363 000h* ⁾	399 000h* ⁾	499 000h*)	At 24V, 5A and 25°C
	173 000h* ⁾	211 000h*)	338 000h ^{*)}	At 24V, 10A and 25°C
	132 000h* ⁾	166 000h* ⁾	286 000h*)	At 24V, 12A and 25°C
MTBF**) SN 29500, IEC 61709	550 000h	560 000h	661 000h	At 24V, 10A and 40°C
	1 003 000h	1 017 000h	1 176 000h	At 24V, 10A and 25°C
MTBF**) MIL HDBK 217F	188 000h	188 000h	213 000h	At 24V, 10A and 40°C; Ground Benign GB40
	252 000h	252 000h	290 000h	At 24V, 10A and 25°C; Ground Benign GB25
	40 000h	40 000h	47 000h	At 24V, 10A and 40°C; Ground Fixed GF40
	51 000h	51 000h	61 000h	At 24V, 10A and 25°C; Ground Fixed GF25

*) The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor's manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131 400h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices.

**) MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product. The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it cannot be determined if the failed unit has been running for 50 000h or only for 100h.

11. FUNCTIONAL DIAGRAM

www.pulspower.com Phone +49 89 9278 0 Germany

DIMENSION CP-Series

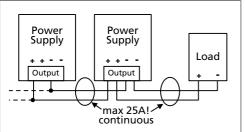
24V, 10A, SINGLE PHASE INPUT

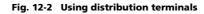
12. TERMINALS AND WIRING

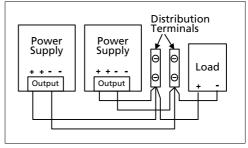
The terminals are IP20 finger safe constructed and suitable for field- and factory wiring.

	Input and Output	DC-OK-Signal
Туре	Quick-connect spring-clamp terminals	Push-in terminals
Solid wire	Max. 6mm ²	Max. 1.5mm ²
Stranded wire	Max. 4mm ²	Max. 1.5mm ²
American Wire Gauge	Max. AWG 20-10	Max. AWG 28-16
Wire diameter (including ferrules)	Max. 2.8mm	Max. 1.6mm
Wire stripping length	10mm / 0.4inch	7mm / 0.28inch
Screwdriver	Not applicable	Not required
Recommended tightening torque	Not applicable	Not applicable

Instructions:


 a) Use appropriate copper cables that are designed for minimum operating temperatures of: 90°C for ambient between 45°C and 60°C minimum 105°C for ambient up to 70°C minimum.


- b) Follow national installation codes and installation regulations!
- c) Ensure that all strands of a stranded wire enter the terminal connection!
- d) Do not use the unit without PE connection.
- e) Unused terminal compartments should be securely tightened.
- f) Ferrules are allowed.


Daisy chaining:

Daisy chaining (jumping from one power supply output to the next) is allowed as long as the average output current through one terminal pin does not exceed 25A. If the current is higher, use a separate distribution terminal block as shown in Fig. 12-2.

DIMENSION **CP-Series** CP10.241-M1

24V, 10A, SINGLE PHASE INPUT

13. FRONT SIDE AND USER ELEMENTS

<u>A</u>

Input Terminals

N, L

Ð

Quick-connect spring-clamp terminals

Line input

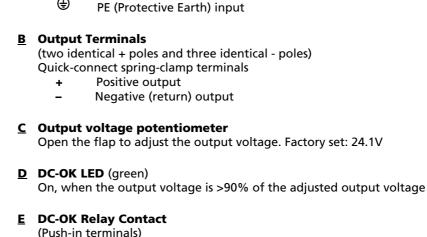

See chapter 8 for details.

Fig. 13-1

CP10.241-M1 wer Supply

AC 100-240V

Monitors the output voltage of the running power supply.

CP10.241-M1

DIMENSION CP-Series

14. EMC – ACCORDING TO GENERIC STANDARDS

In regards to EMC, the power supply is designed for applications in medical applications, industrial environment as well as in residential, commercial and light industry environment.

EMC Immunity	According to ger	eric standards: EN 61000-6-1 and EN	61000-6-2	
Electrostatic discharge	EN 61000-4-2	Contact discharge	8kV	Criterion A
_		Air discharge	15kV	Criterion A
Electromagnetic RF field	EN 61000-4-3	80MHz-2.7GHz	20V/m	Criterion A
Fast transients (Burst)	EN 61000-4-4	Input lines	4kV	Criterion A
		Output lines	2kV	Criterion A
		DC-OK signal (coupling clamp)	2kV	Criterion A
Surge voltage on input	EN 61000-4-5	$L \rightarrow N$	2kV	Criterion A
		$L \rightarrow PE, N \rightarrow PE$	4kV	Criterion A
Surge voltage on output	EN 61000-4-5	+ → -	1kV	Criterion A
		+ / - → PE	2kV	Criterion A
Surge voltage on Signals	EN 61000-4-5	DC-OK signal → PE	1kV	Criterion A
Conducted disturbance	EN 61000-4-6	0.15-80MHz	20V	Criterion A
Mains voltage dips	EN 61000-4-11	0% of 100Vac	0Vac, 20ms	Criterion A
		40% of 100Vac	40Vac, 200ms	Criterion C
		70% of 100Vac	70Vac, 500ms	Criterion A
		0% of 200Vac	0Vac, 20ms	Criterion A
		40% of 200Vac	80Vac, 200ms	Criterion A
		70% of 200Vac	140Vac, 500ms	Criterion A
Voltage interruptions	EN 61000-4-11	0% of 200Vac	0Vac, 5000ms	Criterion C
Voltage sags	SEMI F47 0706	dips on the input voltage according	ng to SEMI F47 stan	dard
		80% of 120Vac (96Vac)	1000ms	Criterion A
		70% of 120Vac (84Vac)	500ms	Criterion A
		50% of 120Vac (60Vac)	200ms	Criterion A
Powerful transients	VDE 0160	Over entire load range	750V, 0.3ms	Criterion A
Criterions:		-		

Criterions:

A: Power supply shows normal operation behavior within the defined limits.

C: Temporary loss of function is possible. Power supply may shut-down and restarts by itself. No damage or hazards for the power supply will occur.

EMC Emission	According to generic standards: EN 61000-6-3 and EN 61000-6-4		
Conducted emission input lines	EN 55011, EN 55015, EN 55022, FCC Part 15, CISPR 11, CISPR 22	Class B for AC Input voltages and Class A for DC input voltages	
Conducted emission output lines ^{**)}	IEC/CISPR 16-1-2, IEC/CISPR 16-2-1	12dB higher than average limits for DC power port according to EN 61000-6-3**)	
Radiated emission	EN 55011, EN 55022	Class B	
Harmonic input current	EN 61000-3-2	Class A fulfilled between 0A and 12A load Class C fulfilled between 6A and 12A load	
Voltage fluctuations, flicker	EN 61000-3-3	Fulfilled ^{*)}	

This device complies with FCC Part 15 rules.

Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

*) Tested with constant current loads, non pulsing

**) For information only, not mandatory for EN 61000-6-3 or EN 61000-6-4

Restrictions apply only for applications in residential, commercial and light-industrial environments, where local DC power networks according

to EN 61000-6-3 are involved. No restrictions for all kinds of industrial applications.

May 2017 / Rev. 1.2 DS-CP10.241-M1-EN

All parameters are specified at 24V, 10A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

DIMENSION

CP-Series

24V, 10A, SINGLE PHASE INPUT

15. EMC – According to Medical Standards

EMC Immunity	According to me	dical standard: EN 60601-1-2		
Electrostatic discharge	EN 61000-4-2	Contact discharge Air discharge	8kV 15kV	Criterion A Criterion A
		Air discharge DC OK signal	8kV	Criterion A
Electromagnetic RF field	EN 61000-4-3	80MHz-2.7GHz	10V/m	Criterion A
	EN 61000-4-3, EN 60601-1-2 table 9	385MHz-5.78GHz	9-28V/m	Criterion A
Fast transients (Burst)	EN 61000-4-4	Input lines	2kV	Criterion A
		Output lines	1kV	Criterion A
		DC-OK signal (coupling clamp)	1kV	Criterion A
Surge voltage on input	EN 61000-4-5	$L \rightarrow N$	1kV	Criterion A
		$L \rightarrow PE, N \rightarrow PE$	2kV	Criterion A
Conducted disturbance	EN 61000-4-6	0.15-80MHz	6V	Criterion A
Rated power frequency	EN 61000-4-8	Frequency 50Hz	30A/m	Criterion A
magnetic fields		Frequency 60Hz	30A/m	Criterion A
Mains voltage dips	EN 61000-4-11	0% of 100Vac	0Vac, 10ms	Criterion A
		0% of 100Vac	0Vac, 20ms	Criterion A
		70% of 100Vac	70Vac, 500ms	Criterion A
		0% of 240Vac	0Vac, 10ms	Criterion A
		0% of 240Vac	0Vac, 20ms	Criterion A
		70% of 240Vac	168Vac, 500ms	Criterion A
Voltage interruptions	EN 61000-4-11	0% of 100Vac	0Vac, 5000ms	Criterion B
		0% of 240Vac	0Vac, 5000ms	Criterion B

A: Power supply shows normal operation behavior within the defined limits.

B: Output voltage out of range or switches off. DC-OK signal might trigger. Restores automatically after the test.

EMC Emission	According to generic standard:	EN 60601-1-2
Conducted emission input lines	EN 55011, CISPR 11	Class B for AC Input voltages and Class A for DC input voltages
Radiated emission	EN 55011, CISPR 11	Class B
Harmonic input current	EN 61000-3-2	Class A fulfilled between 0A and 12A load Class C fulfilled between 6A and 12A load
Voltage fluctuations, flicker	EN 61000-3-3	Fulfilled*)

Switching Frequencies	The power supply has	three converters with two different switching frequencies included.
Switching frequency 1	110kHz	PFC converter, input voltage and output power dependent
Switching frequency 2	110kHz to 140kHz	Main converter, output power dependent
Switching frequency 3	60kHz	Auxiliary converter

May 2017 / Rev. 1.2 DS-CP10.241-M1-EN All parameters are specified at 24V, 10A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

www.pulspower.com Phone +49 89 9278 0 Germany

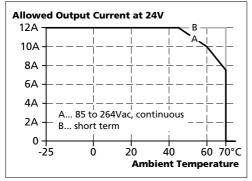
DIMENSION

CP-Series

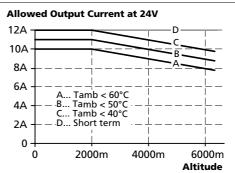
CP10.241-M1

24V, 10A, SINGLE PHASE INPUT

16. Environment


Operational temperature*)	-25°C to +70°C (-13°F to 158°F)	Reduce output power according Fig. 16-1
Non-operational temperature	-40°C to +85°C (-40°F to 185°F)	For storage and transportation
Output de-rating	3.2W/°C 6W/°C	45°C to 60°C (113°F to 140°F) 60°C to 70°C (140°F to 158°F)
Humidity ^{**)}	5 to 95% r.h.	For operation, storage and transportation according to IEC 60068-2-30
Atmospheric pressure	106-70kPa	For operation, storage and transportation
Vibration sinusoidal	2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g***) 2 hours / axis***)	IEC 60068-2-6
Shock	30g 6ms, 20g 11ms ^{***)} 3 bumps / direction, 18 bumps in total	IEC 60068-2-27
Altitude	0 to 3000m (0 to 9 840ft)	For medical applications
	0 to 2000m (0 to 6 560ft)	For all other applications
	2000 to 6000m (6 560 to 20 000ft)	Reduce output power or ambient temperature, see Fig. 16-2.
Altitude de-rating	15W/1000m or 5°C/1000m	Above 2000m (6500ft), see Fig. 16-2
Over-voltage category	III	Altitudes up to 2000m according to IEC/EN 62477-1,
	II	For altitudes from 2000m to 6000m
Degree of pollution	2	According to IEC/EN 62477-1, not conductive
LABS compatibility	The unit does not release any silicone o use in paint shops.	r other LABS-critical substances and is suitable for

*) Operational temperature is the same as the ambient or surrounding temperature and is defined as the air temperature 2cm below the unit.


**) Do not energize while condensation is present

***) Tested in combination with DIN-Rails according to EN 60715 with a height of 15mm and a thickness of 1.3mm and standard orientation.

Fig. 16-2 Output current vs. altitude

May 2017 / Rev. 1.2 DS-CP10.241-M1-EN All parameters are specified at 24V, 10A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

www.pulspower.com Phone +49 89 9278 0 Germany

DIMENSION **CP-Series**

CP10.241-M1

24V, 10A, SINGLE PHASE INPUT

17. SAFETY FEATURES

Input / output separation ¹⁾	SELV	IEC/EN 60950-1	
	PELV	IEC/EN 60204-1, IEC/EN 62477-1, IEC 60364-4-41	
	double or reinforced insu	lation	
Transformers	Safety Isolating Transformers acc. IEC/EN 61558-2-16	Safety Isolating Transformers corresponding to Part 2 of the IEC/EN 61558 5	
Class of protection	I	PE (Protective Earth) connection required	
Isolation resistance	Min. 500MOhm	Input to output, measured with 500Vdc	
PE resistance	Max. 0.10hm	PE terminal to enclosure	
Earth leakage current,			
industrial	Typ. 0.06mA / 0.17mA	100Vac, 50Hz, TN-,TT-mains / IT-mains	
	Typ. 0.09mA / 0.24mA	120Vac, 60Hz, TN-,TT-mains / IT-mains	
	Typ. 0.15mA / 0.42mA	230Vac, 50Hz, TN-,TT-mains / IT-mains	
	Max. 0.08mA / 0.20mA	110Vac, 50Hz, TN-,TT-mains / IT-mains	
	Max. 0.11mA / 0.30mA	132Vac, 60Hz, TN-,TT-mains / IT-mains	
	Max. 0.20mA / 0.55mA	264Vac, 50Hz, TN-,TT-mains / IT-mains	
Earth leakage current ^{2) 3)} ,			
medical	Typ. 0.21mA	264Vac, 60Hz, normal condition	
	Max. 0.24mA	264Vac, 60Hz, normal condition	
	Typ. 0.41mA	264Vac, 60Hz, single fault condition	
	Max. 0.47mA	264Vac, 60Hz, single fault condition	
Touch current ^{2) 3)} , medical,			
Mains to enclosure	Typ. 0.001mA	264Vac, 60Hz, normal condition	
	Max. 0.001mA	264Vac, 60Hz, normal condition	
	Typ. 0.21mA	264Vac, 60Hz, single fault condition	
	Max. 0.24mA	264Vac, 60Hz, single fault condition	
Touch current ^{2) 3)} , medical,			
Mains to output GND (-) pole	Typ. 0.009mA	264Vac, 60Hz, normal condition	
	Max. 0.015mA	264Vac, 60Hz, normal condition	
	Typ. 0.13mA	264Vac, 60Hz, single fault condition	
	Max. 0.15mA	264Vac, 60Hz, single fault condition	
Touch current ^{2) 3)} , medical,			
Mains to output plus (+) pole	Typ. 0.008mA	264Vac, 60Hz, normal condition	
	Max. 0.013mA	264Vac, 60Hz, normal condition	
	Typ. 0.14mA	264Vac, 60Hz, single fault condition	
1) Double or reinforced insulation	Max. 0.16mA	264Vac, 60Hz, single fault condition	

1) Double or reinforced insulation

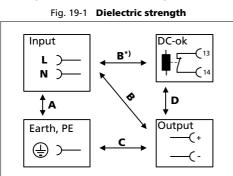
2) 3)

After humidity preconditioning treatment No classification according class B, BF and CF since the power supply is not suitable for application parts with direct patient contact.

DIMENSION

CP-Series

CP10.241-M1


24V, 10A, SINGLE PHASE INPUT

18. PROTECTION FEATURES

Output protection	Electronically protected against overload, no-load and short-circuits*)		
Output over-voltage protection	Typ. 30.5Vdc Max. 32Vdc	In case of an internal power supply defect, a redundant circuit limits the maximum output voltage. The output shuts down and automatically attempts to restart.	
Degree of protection	IP 20	EN/IEC 60529 For use in a controlled environment according to CSA 22.2 No 107.1-01.	
Penetration protection	> 4mm	e.g. screws, small parts	
Over-temperature protection	yes	Output shut-down with automatic restart	
Input transient protection	MOV (Metal Oxide Varisto	()	
Internal input fuse	Included (1 fuse in L-line)	not user replaceable	

19. DIELECTRIC STRENGTH

The output voltage is floating and has no ohmic connection to the ground. Type and factory tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect all input-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below.

	Α	В	С	D
60s	3000Vac	4500Vac	1500Vac	500Vac
5s	3000Vac	4000Vac	1000Vac	500Vac
5s	2700Vac	3500Vac	800Vac	500Vac
Cut-off current setting		> 5mA	> 5mA	> 1mA
	5s 5s	60s 3000Vac 5s 3000Vac 5s 2700Vac	60s 3000Vac 4500Vac 5s 3000Vac 4000Vac 5s 2700Vac 3500Vac	60s 3000Vac 4500Vac 1500Vac 5s 3000Vac 4000Vac 1000Vac 5s 2700Vac 3500Vac 800Vac

B*) When testing input to DC-OK ensure that the max. voltage between DC-OK and the output is not exceeded (column D). We recommend connecting DC-OK pins and the output pins together when performing the test.

Insulation Safety Ratings

Input to Ground	MOPP, MOOP	
Input to Output	2MOPP, 2MOOP	
Output to Ground	МОРР, МООР	

DIMENSION CP-Series

CP10.241-M1

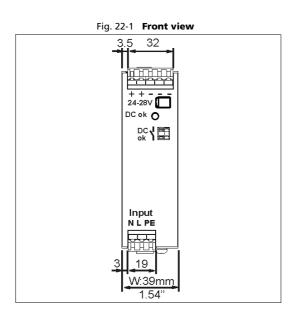
24V, 10A, SINGLE PHASE INPUT

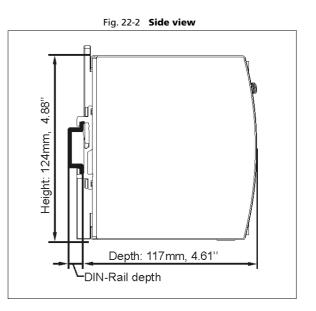
20. APPROVALS

EC Declaration of Conformity	CE	The CE mark indicates conformance with the - EMC directive and the - Low-voltage directive (LVD)
IEC 60601-1 3 nd Edition	IECEE CB SCHEME	CB Scheme, Medical electrical equipment – Part 1: General requirements for basic safety and essential performance 2x MOPP and 2x MOOP (Except risk assessment)
IEC 60950-1 2 nd Edition planned	IECEE CB SCHEME	CB Scheme, Information Technology Equipment
UL 508 planned	C UL US LISTED	Listed for use as Industrial Control Equipment; U.S.A. (UL 508) and Canada (C22.2 No. 107-1-01); E-File: E198865
UL 60950-1 2 nd Edition planned	c FL [®] us	Recognized for use as Information Technology Equipment, Level 5; U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950-1); E-File: E137006 Applicable for altitudes up to 2000m.

21. ROHS, REACH AND OTHER FULFILLED STANDARDS

RoHS Directive	RoHS	Directive 2011/65/EU of the European Parliament and the Council of June 8 th , 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
REACH Directive	REACH	Directive 1907/2006/EU of the European Parliament and the Council of June 1 st , 2007 regarding the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)
EN 60601-1-2	EMC Medical	 Medical electrical equipment - Part 1-2: General requirements for basic safety and essential performance - Collateral standard: Electromagnetic compatibility - Requirements and tests Notes: Clause 4.1 (RMA) is exempted To maintain basic safety in regards to EMC check PE connection every year. Units with mechanical defects or corrosive surfaces should no longer be used.


DIMENSION CP-Series


CP10.241-M1

24V, 10A, SINGLE PHASE INPUT

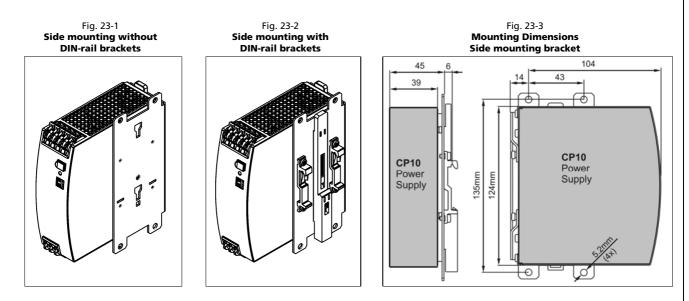
22. PHYSICAL DIMENSIONS AND WEIGHT

Width	39mm 1.54"
Height	124mm 4.88"
Depth	117mm 4.61"
	The DIN-rail height must be added to the unit depth to calculate the total required installation depth.
Weight	620g / 1.37lb
DIN-Rail	Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm.
Housing material	Body: Aluminium alloy Cover: zinc-plated steel
Installation clearances	See chapter 2

DIMENSION CP-Series

CP10.241-M1

24V, 10A, SINGLE PHASE INPUT


23. ACCESSORIES

23.1. ZM12.SIDE - SIDE MOUNTING BRACKET

This bracket is used to mount the device sideways with or without utilizing a DIN-Rail.

The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted.

For sideway DIN-rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket.

DIMENSION CP-Series

24V, 10A, SINGLE PHASE INPUT

23.2. YR20.242 - REDUNDANCY MODULE

The YR20.242 is equipped with two input channels, which are individually decoupled by utilizing MOSFET technology. Using MOSFETSs instead of diodes reduces the heat generation and the voltage drop between input and output. The YR20.242 does not require an additional auxiliary voltage and is self-powered even in case of a short circuit across the output.

Due to the low power losses, the unit is very slender and only requires 32mm width on the DIN-rail.

The YR20.242 can be used for n+1 and 1+1 redundancy systems.

Further information and wiring configurations can be found in chapter 24.7.

23.3. YR20.246 - REDUNDANCY MODULE WITH AUTOMATED LOAD SHARING

The YR20.246 is equipped with two input channels, which are individually decoupled by utilizing MOSFET technology. Using MOSFETSs instead of diodes reduces the heat generation and the voltage drop between input and output. The YR20.246 does not require an additional auxiliary voltage and is self-powered even in case of a short circuit across the output.

Due to the low power losses, the unit is very slender and only requires 32mm width on the DIN-rail. The YR20.246 is optimized for 1+1 redundancy systems.

Compared to the YR20.242, the YR20.246 is featured with an automated load sharing between the connected power supplies. The YR20.246 monitors the function of the redundancy circuitry and provides a signal in case of too high of output current, which could prevent redundancy, if one

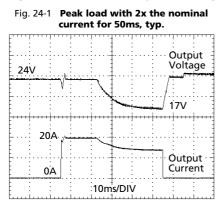
power supply fails.

Further information and wiring configurations can be found in chapter 24.7.

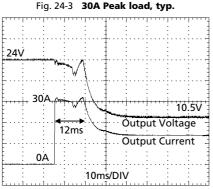
DIMENSION CP-Series

24V, 10A, SINGLE PHASE INPUT

24. APPLICATION NOTES


24.1. PEAK CURRENT CAPABILITY

The unit can deliver peak currents (up to several milliseconds) which are higher than the specified short term currents.


This helps to start current demanding loads. Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current (including the PowerBoost). The same situation applies when starting a capacitive load.

The peak current capability also ensures the safe operation of subsequent circuit breakers of load circuits. The load branches are often individually protected with circuit breakers or fuses. In case of a short or an overload in one branch circuit, the fuse or circuit breaker need a certain amount of over-current to open in a timely manner. This avoids voltage loss in adjacent circuits.

The extra current (peak current) is supplied by the power converter and the built-in large sized output capacitors of the power supply. The capacitors get discharged during such an event, which causes a voltage dip on the output. The following two examples show typical voltage dips:

20A Peak load (resistive) for 50ms Output voltage dips from 24V to 17V.

High Overload Current (typ. 30A for 12ms) enables easy fuse tripping

	current for	vith 5x the 5ms, typ.	
24V		Output Voltage	
50A		15	i.5V
····		·····	· · · · · · · · · · · · · · · · ·
		Ou Cu	itput rrent
0A	1ms/C	NV	· · · · · · · · · · · · · · · · · · ·

50A Peak load (resistive) for 5ms Output voltage dips from 24V to 15.5V.

Please note: The DC-OK relay triggers when the voltage dips more than 10% for longer than 1ms.

Peak current voltage dips	Тур.	From 24V to 17V	At 20A for 50ms, resistive load
	Тур.	From 24V to 19V	At 50A for 2ms, resistive load
	Тур.	From 24V to 15.5V	At 50A for 5ms, resistive load

May 2017 / Rev. 1.2 DS-CP10.241-M1-EN

All parameters are specified at 24V, 10A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

DIMENSION CP-Series

24V, 10A, SINGLE PHASE INPUT

24.2. BACK-FEEDING LOADS

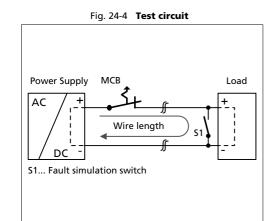
Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back- E.M.F. (Electro Magnetic Force).

This power supply is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter whether the power supply is on or off.

The maximum allowed feed-back-voltage is 35Vdc. The maximum allowed feed-back peak current is 40A. Higher currents can temporarily shut-down the output voltage. The absorbing energy can be calculated according to the built-in large sized output capacitor which is specified in chapter 6.

24.3. EXTERNAL INPUT PROTECTION

The unit is tested and approved for branch circuits up to 30A (UL) and 32A (IEC). An external protection is only required if the supplying branch has an ampacity greater than this. Check also local codes and local requirements. In some countries local regulations might apply.


If an external fuse is necessary or utilized, minimum requirements need to be considered to avoid nuisance tripping of the circuit breaker. A minimum value of 6A B- or C-Characteristic breaker should be used.

24.4. OUTPUT CIRCUIT BREAKERS

Standard miniature circuit breakers (MCB's or UL 1077 circuit breakers) are commonly used for AC-supply systems and may also be used on 24V branches.

MCB's are designed to protect wires and circuits. If the ampere value and the characteristics of the MCB are adapted to the wire size that is used, the wiring is considered as thermally safe regardless of whether the MCB opens or not.

To avoid voltage dips and under-voltage situations in adjacent 24V branches which are supplied by the same source, a fast (magnetic) tripping of the MCB is desired. A quick shutdown within 10ms is necessary corresponding roughly to the ride-through time of PLC's. This requires power supplies with high current reserves and large output capacitors. Furthermore, the impedance of the faulty branch must be sufficiently small in order for the current to actually flow. The best current reserve in the power supply does not help if Ohm's law does not permit current flow. The following table has typical test results showing which B- and C-Characteristic MCBs magnetically trip depending on the wire cross section and wire length.

Maximal wire length^{*)} for a fast (magnetic) tripping:

	0.75mm ²	1.0mm ²	1.5mm ²	2.5mm ²
C-2A	30m	37m	54m	84m
C-3A	25m	30m	46m	69m
C-4A	9m	15m	25m	34m
C-6A	3m	3m	4m	7m
B-6A	12m	15m	21m	34m
B-10A	3m	3m	4m	9m
B-13A	2m	2m	3m	6m

*) Don't forget to consider twice the distance to the load (or cable length) when calculating the total wire length (+ and – wire).

DIMENSION CP-Series

24V, 10A, SINGLE PHASE INPUT

24.5. SERIES OPERATION

Do not use the power supply in series. The leakage current will be too high to meet the medical requirements.

24.6. PARALLEL USE TO INCREASE OUTPUT POWER

Do not use the power supply in parallel. The leakage current will be too high to meet the medical requirements.

24.7. PARALLEL USE FOR REDUNDANCY

Do not use the power supply in parallel. The leakage current will be too high to meet the medical requirements.

24.8. INDUCTIVE AND CAPACITIVE LOADS

The unit is designed to supply any kind of loads, including capacitive and inductive loads. If extreme large capacitors, such as EDLCs (electric double layer capacitors or "UltraCaps") with a capacitance larger than 1.5F are connected to the output, the unit might charge the capacitor in the Hiccup^{PLUS} mode (see chapter 6).

24.9. CHARGING OF BATTERIES

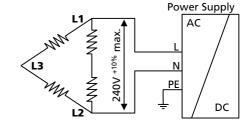
The power supply can be used to charge lead-acid or maintenance free batteries (SLA or VRLA batteries). Two 12V batteries are needed in series.

Instructions for charging batteries:

a) Set output voltage (measured at no load and at the battery end of the cable) very precisely to the end-of-charge voltage.

End-of-charge voltage	27.8V	27.5V	27.15V	26.8V
Battery temperature	10°C	20°C	30°C	40°C

b) Use a 15A or 16A circuit breaker (or blocking diode) between the power supply and the battery.


- c) Ensure that the output current of the power supply is below the allowed charging current of the battery.
- d) Use only matched batteries when putting 12V types in series.
- e) Ensure that the ambient temperature of the power supply stays below 40°C.
- f) The return current to the power supply (battery discharge current is typ. 3.5mA when the power supply is switched off (except in case a blocking diode is utilized).

DIMENSION CP-Series

24V, 10A, SINGLE PHASE INPUT

24.10. OPERATION ON TWO PHASES

The power supply can also be used on two-phases of a three-phasesystem. Such a phase-to-phase connection is allowed as long as the supplying voltage is below $240V^{+10\%}$.

24.11. Use in a Tightly Sealed Enclosure

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the power supply.

The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure.

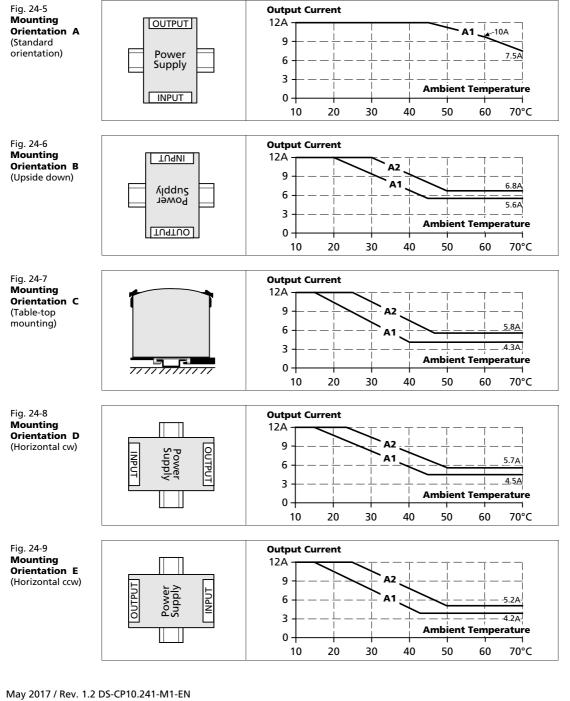
The power supply is placed in the middle of the box, no other heat producing items are inside the box

Input:	230Vac
Case A:	Enclosure: Rittal Typ IP66 Box PK 9519 100, plastic, 180x180x165mm
Load:	24V, 8A; (=80%) load is placed outside the box
Temperature inside the box:	42.0°C (in the middle of the right side of the power supply with a distance of 1cm)
Temperature outside the box:	25.8°C
Temperature rise:	16.2K
Case B:	Enclosure: Rittal Typ IP66 Box PK 9519 100, plastic, 180x180x165mm
Load:	24V, 10A; load is placed outside the box
Temperature inside the box:	48.1°C (in the middle of the right side of the power supply with a distance of 1cm)
Temperature outside the box:	26.2°C
Temperature rise:	21.9K
Case C:	Enclosure: Rittal Typ IP66 Box PK 9516 100, plastic, 110x180x165mm
Load:	24V, 8A; (=80%) load is placed outside the box
Temperature inside the box:	48.6°C (in the middle of the right side of the power supply with a distance of 1cm)
Temperature outside the box:	26.3°C
Temperature rise:	22.3K
Case D:	Enclosure: Rittal Typ IP66 Box PK 9519 100, plastic, 110x180x165mm
Load:	24V, 10A; load is placed outside the box
Temperature inside the box:	53.8°C (in the middle of the right side of the power supply with a distance of 1cm)
Temperature outside the box:	26.6°C
Temperature rise:	27.3K

DIMENSION CP-Series

PULS

24V, 10A, SINGLE PHASE INPUT


24.12. MOUNTING ORIENTATIONS

Mounting orientations other than all terminals on the bottom require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1 Recommended output current.

Curve A2

Max allowed output current (results in approximately half the lifetime expectancy of A1).

All parameters are specified at 24V, 10A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.